Characterizing Real-World Functional Outcomes in Patients With Geographic Atrophy: An IRIS Registry Analysis

<u>Durga Borkar</u>, Theodore Leng, Meghan Hatfield, Sonya Li, Mark Gallivan, Preeti Joshi, Alex McKeown

July 15, 2022 40th Annual Meeting of the American Society of Retina Specialists, NY

Financial disclosures

- Durga Borkar has the following financial interests or relationships to disclose:
 - Consulting Fees: Allergan, Glaukos, Regeneron
- This study was funded by Apellis Pharmaceuticals

Introduction

- GA accounts for one-third of the cases of late AMD
 - Including 20% of cases of severe vision loss¹
- GA significantly impairs visual function and QoL²
 - Real-world data on correlations between GA progression and functional decline are lacking
- We performed a retrospective cohort analysis of patient notes to assess the feasibility of quantifying VR-QoL and PROs in GA
 - Emphasis was placed on social, functional, and mobility-related outcomes

AMD=age-related macular degeneration; GA=geographic atrophy; PRO=patient-reported outcome; QoL=quality of life; VR-QoL=vision-related quality of life. 1. Biarnés M et al. Optom Vis Sci. 2011;88:881-9; 2. Sarda SP et al. Clin Ophthalmol. 2021;15:4629-44.

Part 1. Keyword objective and methodology

Part 1 – Keyword objective: From clinical notes^a of patients with GA, determine clinically and potentially contextually relevant **keywords** associated with social, mobility, and other activity/QoL endpoints

^aObtained from the American Academy of Ophthalmology IRIS[®] Registry (Intelligent Research in Sight), a real-world electronic health record dataset. GA=geographic atrophy; QoL=quality of life; yr=year.

Keywords

Patient demographics and disease characteristics

	Cohort 1 Newly diagnosed GA (n=101)	Cohort 2 Prevalent GA, 3-yr follow-up (n=94)
	\sim	\checkmark
Age (SD), years	80.6 (7.5)	81.9 (6.3)
Subfoveal GA, %	53.5%	62.4%
Concomitant glaucoma, %	27.7%	37.6%
Concomitant cataract, %	39.6%	34.6%

• The majority of patients were managed by retina specialists

GA=geographic atrophy; SD=standard deviation; yr=year.

Part 1. Results

	Cohort 1 – New GA Diagnosis (n=101)		Cohort 2 – Prevalent GA Diagnosis (n=94)			
	Keyword	Matchesª, n (%)	Context Matches ^ь , n (%)	Keyword	Matchesª, n (%)	Context Matches ^ь , n (%)
-unctional:	Driving	6 (6%)	4 (67%)	Driving	1 (1%)	0 (0%)
	Reading	12 (12%)	10 (83%)	Reading	10 (11%)	7 (70%)
	Low vision	3 (3%)	3 (100%)	Low vision	2 (2%)	2 (100%)
Social:	Depression	7 (7%)	1 (14%)	Depression	5 (5%)	1 (20%)
	Anxiety	2 (2%)	2 (100%)	Anxiety	0 (0%)	-
Other:	Limited	11 (11%)	2 (18%)	Limited	14 (15%)	3 (21%)

^aKeywords with 0% matches: ADL, Face, Fine Print, Sad, Autonomy, Independence, Caregiver, Disability, Mobility, Rehab.

^bContext match refers to whether the keyword was mentioned in our context of interest. ADL=activity of daily living; GA=geographic atrophy.

Key learnings from part 1

Documentation patterns of retina specialists

- · Retina specialists' documentation of PROs and functional vision impact are limited
- Low-vision specialists may play a larger role in management of vision deterioration due to GA

PROs in the electronic health record notes

- Documentation is generally sparse, with an emphasis on disease progression over patient outcomes
- Functional terms more likely to be mentioned: "driving ability", "reading ability", and referral to a low-vision specialist
- Overall documentation of these keywords was highly infrequent
 - Particularly those related to patient function

Part 2. Context objective and methodology

Part 2 – Context objective: From the keywords found to be associated with social, mobility, and other activity or QoL outcomes, what **context** or concepts are being represented in the patient clinical notes

GA=geographic atrophy; QoL=quality of life.

Part 2. Context results

ADL=activity of daily living; TV=television.

Key learnings from part 2

- It is difficult to determine if the impacts on functional vision are due to other comorbid ocular conditions
 - Including cataracts, presbyopia, other retinal disease
- Despite these limitations, understanding the holistic health burden among patients with GA is valuable
- Future studies should focus on:
 - Patients with GA and a substantial visual acuity decline
 - Those managed by low-vision specialists
 - Eyes with asymmetric GA
 - Those without cataracts

Conclusions

- VR-QoL and PROs are infrequently documented
 - This limits the utility of the EHRs for assessing functional outcomes
- Retina specialists often refer patients with GA to low-vision specialists
 - They may be more likely to monitor and document changes in VR-QoL
- · Additional data sources may be needed to characterize the impact of GA on patient QoL
 - Patient-centric monitoring devices (digital apps/wearables) and PROs
- Real-world assessment of PROs is lacking, necessitating improved tools to collect real-world data on patient QoL