Efficacy of intravitreal pegcetacoplan in geographic atrophy: results from the DERBY and OAKS trials

Nathan Steinle, David Boyer, Jeffrey Heier, Charles Wykoff, Rishi Singh, Jordi Monés, Giovanni Staurenghi, Frank G. Holz, Caleb Bliss, Pascal Deschatelets, Federico Grossi, Cedric Francois, Ramiro Ribeiro

October 11, 2021
American Society of Retina Specialists 2021, San Antonio, TX

Pegcetacoplan is an investigational product in geographic atrophy. The treatment discussed in the presentation is not an FDA-approved use of pegcetacoplan.
Disclosures

- Dr. Steinle is a consultant or has received financial support from Apellis, Genentech, and Novartis.
- Studies funded by Apellis Pharmaceuticals
Dysregulation of the complement cascade has been implicated in GA pathogenesis

All 3 complement pathways end in the central cleavage of C3

Pegcetacoplan is a pegylated, highly-selective peptide that binds C3, preventing its cleavage

Inhibition of C3 blocks steps in the complement cascade needed for opsonization, inflammation, and formation of MAC
Introduction and objective

Phase 2 FILLY Results

Change from baseline in square root GA lesion size (mm)

- **20% (every other month) reduction**
 - Primary endpoint
 - Month 12
 - p=0.067 vs sham*

- **29% (monthly) reduction**
 - p=0.008 vs sham*

*P<0.1 was the predefined threshold for statistical significance in FILLY.

Phase 3 DERBY & OAKS objective: to assess the efficacy and safety of multiple intravitreal injections of pegcetacoplan in patients with GA secondary to AMD

Sham (n=80, pooled) PEOM (n=78) PM (n=84)

LS mean (±SE) change from baseline in square root GA lesion (mm)

Baseline M2 M6 M12

- 20% reduction
- 29% reduction

*P<0.1 was the predefined threshold for statistical significance in FILLY.

AMD=age-related macular degeneration; GA=geographic atrophy; LS=least squares; M=Month; PEOM=pegcetacoplan every other month; PM=pegcetacoplan monthly; SE=standard error.

Patients with GA secondary to AMD
~600 patients at ~200 sites globally in 2 studies (1258 enrollees total)

Double masked
Randomized 2:2:1:1

Pegcetacoplan
15 mg/0.1 mL monthly

Pegcetacoplan
15 mg/0.1 mL EOM

Sham monthly

Sham EOM

Primary endpoint at 12 months
Change in total area of GA lesions based on fundus autofluorescence

End of study at 24 months

Protocol study number,
APL-2 303 (DERBY);
NCT03525600

Protocol study number,
APL-2 304 (OAKS);
NCT03525613

AMD=age-related macular degeneration; EOM=every other month; GA=geographic atrophy.
Key inclusion and exclusion criteria

Key inclusion criteria

- Age ≥60 years
- BCVA ≥24 letters ETDRS (20/320 Snellen equivalent)
- GA lesion requirements:
 - Total size: ≥2.5 and ≤17.5 mm²
 - Foveal and extrafoveal GA allowed
 - If multifocal, at least 1 focal lesion must be ≥1.25 mm² (0.5 DA)
 - Presence of perilesional hyperautofluorescence

Key exclusion criteria

- GA secondary to a condition other than AMD, such as Stargardt disease in either eye
- Ocular history of or active CNV in the study eye, including presence of RPE tear (assessed by reading center)

Ocular history of active CNV in the fellow eye is not exclusionary

AMD=age-related macular degeneration; BCVA=best-corrected visual acuity; CNV=choroidal neovascularization; DA=disc area; ETDRS=Early Treatment Diabetic Retinopathy Study; GA=geographic atrophy; RPE=retinal pigment epithelium.
Key endpoints

Primary

- Change from baseline to Month 12 in total area of GA lesion(s) in the study eye (in mm²) based on FAF

Secondary (prespecified analyses to be conducted at 24 months)

- BCVA, LL-BCVA, low-luminance deficit
- Reading speed
- Microperimetry (OAKS study only*) — Macular Integrity Assessment (MAIA) device
- National Eye Institute Visual Functioning Questionnaire 25-Item Version (NEI VFQ-25)
- Functional Reading Independence Index (FRI) composite score

*Patients must meet following criteria: (a) able to detect fixation target, (b) total elapsed time to complete 68-point exam <30 min, (c) reliability test ratio <20%, (d) willing and able to undertake microperimetry in investigator’s opinion.

BCVA=best-corrected visual acuity; FAF=fundus autofluorescence; GA=geographic atrophy; LL-BCVA=low-luminance BCVA.
These analyses were performed on the modified intention-to-treat (mITT) population. The mITT population was defined as all randomized patients who received at least 1 injection of pegcetacoplan or sham and have baseline and at least 1 post-baseline value of GA lesion area in the study eye.

GA=geographic atrophy; mm=millimeters; n=number of patients; NL-BCVA=normal luminance best-corrected visual acuity; PM=pegcetacoplan monthly; PEOM=pegcetacoplan every other month; ROW=rest of world; SD=standard deviation; US=United States.

Key demographics and baseline study eye characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PM (N=202)</th>
<th>PEOM (N=205)</th>
<th>Sham Pooled (N=206)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD)</td>
<td>78.8 (7.24)</td>
<td>78.1 (7.74)</td>
<td>78.6 (7.26)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>125 (61.9%)</td>
<td>117 (57.1%)</td>
<td>133 (64.6%)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>77 (38.1%)</td>
<td>88 (42.9%)</td>
<td>73 (35.4%)</td>
</tr>
<tr>
<td>Geographic region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US, n (%)</td>
<td>147 (72.8%)</td>
<td>142 (69.3%)</td>
<td>147 (71.4%)</td>
</tr>
<tr>
<td>ROW, n (%)</td>
<td>55 (27.2%)</td>
<td>63 (30.7%)</td>
<td>59 (28.6%)</td>
</tr>
<tr>
<td>Caucasian, n (%)</td>
<td>185 (91.6%)</td>
<td>189 (92.2%)</td>
<td>187 (90.8%)</td>
</tr>
<tr>
<td>GA lesion size (mm²), mean (SD)</td>
<td>8.18 (3.893)</td>
<td>8.29 (3.904)</td>
<td>8.20 (3.722)</td>
</tr>
<tr>
<td>Square root GA lesion size (mm), mean (SD)</td>
<td>2.78 (0.682)</td>
<td>2.80 (0.674)</td>
<td>2.79 (0.649)</td>
</tr>
<tr>
<td>GA lesion size, n (%)</td>
<td><7.5 mm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrafoveal</td>
<td>101 (50.0%)</td>
<td>99 (48.3%)</td>
<td>104 (50.5%)</td>
</tr>
<tr>
<td>Unifocal</td>
<td>86 (42.6%)</td>
<td>74 (36.1%)</td>
<td>60 (29.1%)</td>
</tr>
<tr>
<td>Intermediate/large drusen, n (%)</td>
<td>>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrafoveal</td>
<td>93 (46.0%)</td>
<td>104 (50.7%)</td>
<td>103 (50.0%)</td>
</tr>
<tr>
<td>Unifocal</td>
<td>61.0 (15.30)</td>
<td>58.2 (17.03)</td>
<td>57.5 (16.57)</td>
</tr>
</tbody>
</table>

These analyses were performed on the modified intention-to-treat (mITT) population. The mITT population was defined as all randomized patients who received at least 1 injection of pegcetacoplan or sham and have baseline and at least 1 post-baseline value of GA lesion area in the study eye.

GA=geographic atrophy; mm=millimeters; n=number of patients; NL-BCVA=normal luminance best-corrected visual acuity; PM=pegcetacoplan monthly; PEOM=pegcetacoplan every other month; ROW=rest of world; SD=standard deviation; US=United States.
Key demographics and baseline study eye characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PM (N=201)</th>
<th>PEOM (N=200)</th>
<th>Sham Pooled (N=194)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD)</td>
<td>78.7 (6.91)</td>
<td>79.2 (7.07)</td>
<td>78.6 (7.29)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>118 (58.7%)</td>
<td>120 (60.0%)</td>
<td>122 (62.9%)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>83 (41.3%)</td>
<td>80 (40.0%)</td>
<td>72 (37.1%)</td>
</tr>
<tr>
<td>Geographic region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US, n (%)</td>
<td>142 (70.6%)</td>
<td>122 (61.0%)</td>
<td>122 (62.9%)</td>
</tr>
<tr>
<td>ROW, n (%)</td>
<td>59 (29.4%)</td>
<td>78 (39.0%)</td>
<td>72 (37.1%)</td>
</tr>
<tr>
<td>Caucasian, n (%)</td>
<td>187 (93.0%)</td>
<td>185 (92.5%)</td>
<td>187 (96.4%)</td>
</tr>
<tr>
<td>GA lesion size (mm²), mean (SD)</td>
<td>8.36 (4.182)</td>
<td>8.22 (3.886)</td>
<td>8.26 (4.260)</td>
</tr>
<tr>
<td>Square root GA lesion size (mm), mean (SD)</td>
<td>2.80 (0.723)</td>
<td>2.79 (0.677)</td>
<td>2.78 (0.734)</td>
</tr>
<tr>
<td>GA lesion size, n (%)</td>
<td><7.5 mm²</td>
<td>99 (49.3%)</td>
<td>98 (49.0%)</td>
</tr>
<tr>
<td>GA lesion location, n (%)</td>
<td>Extrafoveal</td>
<td>72 (35.8%)</td>
<td>81 (40.5%)</td>
</tr>
<tr>
<td>GA lesion focality, n (%)</td>
<td>Unifocal</td>
<td>54 (26.9%)</td>
<td>53 (26.5%)</td>
</tr>
<tr>
<td>Intermediate/large drusen, n (%)</td>
<td>>20</td>
<td>78 (38.8%)</td>
<td>78 (39.0%)</td>
</tr>
<tr>
<td>NL-BCVA (ETDRS letters), mean (SD)</td>
<td>59.5 (17.40)</td>
<td>58.9 (15.97)</td>
<td>59.1 (16.85)</td>
</tr>
</tbody>
</table>

These analyses were performed on the modified intention-to-treat (mITT) population. The mITT population was defined as all randomized patients who received at least 1 injection of pegcetacoplan or sham and have baseline and at least 1 post-baseline value of GA lesion area in the study eye.

GA=geographic atrophy; mm=millimeters; n=number of patients; NL-BCVA=normal luminance best-corrected visual acuity; PM=pegcetacoplan monthly; PEOM=pegcetacoplan every other month; ROW=rest of world; SD=standard deviation; US=United States.
OAKS: Pegcetacoplan met the primary endpoint and further reduced lesion growth in patients with extrafoveal lesions

Primary Endpoint

- 22% (monthly) reduction
- p=0.0003 vs sham

- 16% (every other month) reduction
- p=0.0052 vs sham

Prespecified Extrafoveal Analysis

- 35% (monthly) reduction
- p<0.0001 vs sham (nominal)

- 21% (every other month) reduction
- p=0.0159 vs sham (nominal)

LS mean change (±SE) from baseline in GA lesion (mm²)

LS means estimated from a mixed-effects model for repeated measures. The modified intention-to-treat population was used for the analysis.

GA=geographic atrophy; LS=least square; M=month; PEOM=pegcetacoplan every other month; PM=pegcetacoplan monthly; SE=standard error.
DERBY: Pegcetacoplan did not meet the primary endpoint and reduced lesion growth in patients with extrafoveal lesions

Primary Endpoint

<table>
<thead>
<tr>
<th>Sham (n=194, pooled)</th>
<th>PEOM (n=200)</th>
<th>PM (n=201)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>M2</td>
<td>M4</td>
</tr>
<tr>
<td>M6</td>
<td>M8</td>
<td>M10</td>
</tr>
<tr>
<td>M12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12% (monthly) reduction
\(p=0.0528 \) vs sham

11% (every other month) reduction
\(p=0.0750 \) vs sham

Prespecified Extrafoveal Analysis

<table>
<thead>
<tr>
<th>Sham (n=73, pooled)</th>
<th>PEOM (n=81)</th>
<th>PM (n=72)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>M2</td>
<td>M4</td>
</tr>
<tr>
<td>M6</td>
<td>M8</td>
<td>M10</td>
</tr>
<tr>
<td>M12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

25% (every other month) reduction
\(p=0.0028 \) vs sham (nominal)

16% (monthly) reduction
\(p=0.0712 \) vs sham (nominal)

LS means estimated from a mixed-effects model for repeated measures. The modified intention-to-treat population was used for the analysis.

GA=geographic atrophy; LS=least square; M=month; PEOM=pegcetacoplan every other month; PM=pegcetacoplan monthly; SE=standard error.
OAKS and DERBY: Pegcetacoplan reduced lesion growth in prespecified combined analyses of the primary endpoint and in extrafoveal lesions

Primary Endpoint

LS mean change (±SE) from baseline in GA lesion (mm²)

<table>
<thead>
<tr>
<th>Baseline</th>
<th>M2</th>
<th>M4</th>
<th>M6</th>
<th>M8</th>
<th>M10</th>
<th>M12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham (n=400, pooled)</td>
<td>PEOM (n=405)</td>
<td>PM (n=403)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prespecified Extrafoveal Analysis

LS mean change (±SE) from baseline in GA lesion (mm²)

<table>
<thead>
<tr>
<th>Baseline</th>
<th>M2</th>
<th>M4</th>
<th>M6</th>
<th>M8</th>
<th>M10</th>
<th>M12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham (n=133, pooled)</td>
<td>PEOM (n=155)</td>
<td>PM (n=158)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LS means estimated from a mixed-effects model for repeated measures. The modified intention-to-treat population was used for the analysis.
GA=geographic atrophy; LS=least square; M=month; PEOM=pegcetacoplan every other month; PM=pegcetacoplan monthly; SE=standard error.
Patients with bilateral GA were included in this analysis of DERBY and OAKS.

In addition, for a subject to be included, the fellow eye had to meet the following criteria:

- Absence of CNV in the medical history
- Baseline GA lesion size between 2.5 and 17.5 mm2
- Presence of any pattern of hyperautofluorescence in the junctional zone of GA
- GA not confluent with peripapillary atrophy

For FILLY, all bilateral GA patients are included due to lower sample size.

Effect sizes can differ from sham-controlled analysis due to potential fellow eye drug effect.
Balanced lesion growth in study eyes vs. fellow eyes in sham pooled groups

OAKS

7% faster growth
study eye vs fellow eye
p = 0.1236 (nominal)

DERBY

0% faster growth
study eye vs fellow eye
p = 0.9828 (nominal)

FILLY

4% faster growth
study eye vs fellow eye
p = 0.5555 (nominal)

LS means estimated from a mixed-effects model for repeated measures. The mITT population was used for the analysis.

GA=geographic atrophy; LS=least square; M=month; PEOM=pegcetacoplan every other month; PM=pegcetacoplan monthly; SE=standard error.
Pegcetacoplan every other month reduced lesion growth in treated study eyes vs. untreated fellow eyes

<table>
<thead>
<tr>
<th>Study</th>
<th>LS Mean Change (±SE) from Baseline in GA Lesion (mm²)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAKS</td>
<td>6% reduced growth study eye vs fellow eye p = 0.2589 (nominal)</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>DERBY</td>
<td>16% reduced growth study eye vs fellow eye p = 0.0003 (nominal)</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>FILLY</td>
<td>12% reduced growth study eye vs fellow eye p = 0.0951 (nominal)</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
</tr>
</tbody>
</table>

LS means estimated from a mixed-effects model for repeated measures. The mITT population was used for the analysis. GA = geographic atrophy; LS = least square; M = month; PEOM = pegcetacoplan every other month; PM = pegcetacoplan monthly; SE = standard error.
Pegcetacoplan **monthly** reduced lesion growth in treated study eyes vs. untreated fellow eyes

LS Mean Change (±SE) from Baseline in GA Lesion (mm²)

OAKS
- 18% reduced growth study eye vs fellow eye
 - p = 0.0005 (nominal)

DERBY
- 14% reduced growth study eye vs fellow eye
 - p = 0.0012 (nominal)

FILLY
- 18% reduced growth study eye vs fellow eye
 - p = 0.0094 (nominal)

LS means estimated from a mixed-effects model for repeated measures. The mITT population was used for the analysis.

GA=geographic atrophy; LS=least square; M=month; PEOM=pegcetacoplan every other month; PM=pegcetacoplan monthly; SE=standard error.
Conclusions

- Pegcetacoplan monthly and every other month met the primary endpoint in OAKS
- Pegcetacoplan monthly and every other month did not meet the primary endpoint in DERBY
- Pegcetacoplan demonstrated greater efficacy in patients with extrafoveal lesions at baseline
- OAKS, DERBY, and FILLY all show consistent efficacy of pegcetacoplan in treated study eyes versus untreated fellow eyes
- The pegcetacoplan GA development program includes over 1,500 patients across OAKS, DERBY, and FILLY, collectively demonstrating slowing of GA progression by pegcetacoplan monthly and every other month

GA=geographic atrophy.