Pegcetacoplan: Advancing the First Potential Treatment for Geographic Atrophy (GA)

Virtual Investor Event
January 28, 2021
Forward-looking Statements

Statements in this presentation about future expectations, plans and prospects, as well as any other statements regarding matters that are not historical facts, may constitute “forward-looking statements” within the meaning of The Private Securities Litigation Reform Act of 1995. These statements include, but are not limited to, statements relating to the implications of preliminary clinical data. The words “anticipate,” “believe,” “continue,” “could,” “estimate,” “expect,” “intend,” “may,” “plan,” “potential,” “predict,” “project,” “should,” “target,” “will,” “would” and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors, including: whether the company’s clinical trials will be fully enrolled and completed when anticipated; whether preliminary or interim results from a clinical trial will be predictive of the final results of the trial; whether results obtained in preclinical studies and clinical trials will be indicative of results that will be generated in future clinical trials; whether pegcetacoplan will successfully advance through the clinical trial process on a timely basis, or at all; whether the results of the company’s clinical trials will warrant regulatory submissions and whether pegcetacoplan will receive approval from the FDA or equivalent foreign regulatory agencies for GA, PNH, CAD, HSCT-TMA, C3G, IC-MPGN, ALS or any other indication when expected or at all; whether, if Apellis’ products receive approval, they will be successfully distributed and marketed; and other factors discussed in the “Risk Factors” section of Apellis’ Quarterly Report on Form 10-Q filed with the Securities and Exchange Commission on November 2, 2020 and the risks described in other filings that Apellis may make with the Securities and Exchange Commission. Any forward-looking statements contained in this press release speak only as of the date hereof, and Apellis specifically disclaims any obligation to update any forward-looking statement, whether as a result of new information, future events or otherwise.
Disclosures

<table>
<thead>
<tr>
<th>Name</th>
<th>Consultant:</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAROLINE R. BAUMAL</td>
<td>Apellis, Genentech, Novartis, Gemini Therapeutics, Zeiss</td>
<td></td>
</tr>
</tbody>
</table>
| NANCY M. HOLEKAMP | Allergan, Acucela, Apellis, Bayer, Lineage Cell Therapeutics, Clearside Biosciences, Gemini, Genentech, Gyroscope, Katalyst Surgical, Nacuity, Notal Vision, Novartis, Polyactiva, Regeneron | - **Speakers Bureau:** Allergan, Genentech, Novartis, Regeneron, Spark
- **Contracted Research:** Genentech, Gemini, Gyroscope, Notal Vision
- **Intellectual Property/Patent:** Katalyst Surgical |
| PEARSE A. KEANE | DeepMind, Roche, Novartis, and Apellis | Dr. Keane is an equity owner in Big Picture Medical and has received speaker fees from Heidelberg Engineering, Topcon, Allergan, and Bayer. |

FOR APELLIS USE ONLY
Agenda

<table>
<thead>
<tr>
<th>Topic</th>
<th>Speaker</th>
</tr>
</thead>
</table>
| **Introductions** | **FEDERICO GROSSI, M.D., PH.D**
Chief Medical Officer, Apellis
CEDRIC FRANCOIS, M.D., PH.D.
Chief Executive Officer, Apellis |
| **Overview of Age-related Macular Degeneration (AMD)** | **CAROLINE R. BAUMAL, M.D.**
Professor of Ophthalmology
Tufts Medical Center, New England Eye Center, Retina Department |
| **Natural History and Unmet Need in GA** | **NANCY M. HOLEKAMP, M.D.**
Director, Retina Services
Pepose Vision Institute |
| **Role of Complement C3 in AMD** | **LUKAS SCHEIBLER, PH.D.**
Chief Innovation Officer, Apellis |
| **Pegcetacoplan: Phase 2 FILLY Results** | **JEFFREY S. HEIER, M.D.**
Director, Retina Service and Director, Retinal Research
Ophthalmic Consultants of Boston |
| **Pegcetacoplan: Phase 3 DERBY and OAKS Studies** | **JEFFREY EISELE, PH.D.**
Local Chronic Program Lead, Apellis |
| **Early Detection of Geographic Atrophy with Artificial Intelligence**| **PEARSE A. KEANE, M.D.**
Consultant Ophthalmologist, Moorfields Eye Hospital NHS Foundation Trust
Associate Professor, University College London |
| **Q&A** | **ALL** |
Apellis: Global Leader in Complement

OUR STRATEGY
- Establish systemic pegcetacoplan as a **disruptive therapy** across rare, complement-driven diseases
- Be #1 in the **retina**
- Develop **new technologies** to control complement

2021 KEY MILESTONES
- **PNH launch in H1 2021** and progress 4 additional registrational programs
- **Phase 3 GA results in Q3 2021** a blockbuster opportunity
- **Advance 3 compounds into clinical development** in the next 24 months

Focused on compassion and commitment to patients
Key Misconceptions We’ll Address Today

“Other complement inhibitors have failed. Why should pegcetacoplan work?”

“Pegcetacoplan has no impact on visual acuity. It will take years to notice a difference. Why would people take this drug?”

“How can we trust the FILLY data?”

“The FILLY trial had safety issues. Pegcetacoplan causes ‘wet AMD’ and had two cases of infectious endophthalmitis.”
Living with Geographic Atrophy

Carolyn’s Story
Overview of Age-related Macular Degeneration (AMD)

Caroline R. Baumal, M.D.
Professor of Ophthalmology, Tufts Medical Center
New England Eye Center, Retina Department
Boston, MA
AMD Causes Progressive Loss of Central Vision

- AMD is a degenerative disease of the macula, part of the retina important for detailed and color vision.
- Risk factors include age, genetics, and lifestyle/environmental factors.
- Can be classified as dry or wet, as well as by severity.
- Global prevalence of AMD:
 - >196 million projected for 2020\(^1\)
 - >288 million projected by 2040\(^1\)
 - From age 50, prevalence approximately quadruples with every 10 years of age\(^2\)

AMD Progresses through Stages

EARLY AMD
combination of multiple small drusen, few intermediate drusen (63-124 μm), or mild retinal pigment epithelium (RPE) atrophy

INTERMEDIATE AMD
large drusen (>125 μm), presenting as sharply defined, usually round or oval areas of atrophy in the RPE

LATE AMD
may present as wet AMD or geographic atrophy (GA). GA is characterized by large, confluent regions of atrophied RPE

Late AMD Is either Wet AMD or Geographic Atrophy (GA)

- Early AMD is typically asymptomatic
- Intermediate AMD is associated with some vision loss
- People with late AMD (Wet AMD or GA) experience significant vision loss

Illustration image source: https://amarketresearchgazette.com/age-related-macular-degeneration-market-to-witness-the-highest-growth-globally-in-coming-years/
Wet AMD Is Treatable

- Approximately 15 million North Americans have AMD
- 10-15% of this population has wet AMD
- Wet AMD can be effectively treated with anti-VEGF therapy

Fundus image from https://www.aao.org/eye-health/diseases/amd-macular-degeneration-pictures-videos
OCT image from Serener, Serte Published 2019, Medicine2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT)
Anti-VEGF Therapies Have Reduced Global Burden of Wet AMD

- Treatment of wet AMD with anti-VEGF therapy improves visual acuity\(^1\)

- A systematic literature review reported that introduction of anti-VEGF therapies in clinical practice has been associated with a significant reduction in the prevalence of blindness\(^2\)

Most significant remaining unmet need within AMD is for effective therapies to address geographic atrophy

2. Finger et al., *BMC Ophthalmology* 2020

Figure adapted from Heier et al., 2012.
There are **5 million people** living with GA worldwide; 1 million are in the US\(^1\)

GA accounts for **20% of all legal blindness** attributed to AMD\(^2,3\)

There is **no approved treatment** for GA\(^1\)

2. Ferris FL 3rd et al., *Arch Ophthalmol.* 1984

Image from Holz FG et al., *Ophthalmology* 2014.
GA Lesion Growth Is Progressive, Constant, and Irreversible

Figure adapted from Holekamp, et al. Ophthalmology. 2020; 127(6): 769-783. Image and video courtesy of Dr. Nathan Steinle.
GA Lesions Can Impact Extrafoveal and Foveal Regions

• Lesions typically appear first in the perifoveal macula sparing the fovea (foveal sparing) before expanding to include the fovea.

• Extrafoveal lesions tend to progress more quickly than foveal lesions.
Some GA patients may exhibit **choroidal neovascularization** (CNV) or new blood vessel growth in the choroid.

An **exudation** is defined as leakage from these blood vessels.

Wet AMD is characterized by CNV and edema, RPE detachment, and subretinal hemorrhage.

A: En face structure image under Bruch’s membrane (BM)

B: En face angiographic image (RPE to BM), showing CNV (arrow)

C: En face structure image of B

D: OCT B-scan through **type 1 subclinical MNV**

E: OCT B-scan showing **double-layer sign adjacent to GA**

OCT=optical coherence tomography; MNV=macular neovascularization
GA Is also Responsible for Vision Loss in Patients with Wet AMD Despite Treatment with Anti-VEGF

• In the Seven-UP study, 98% of wet AMD patients on anti-VEGF therapy developed GA over 7 years of follow up (n=58)\(^1\)

• In the CATT study, 38% of wet AMD patients on anti-VEGF therapy developed GA over 5 years of follow up (n=1024)\(^2\)

1. Rofagha et al., Ophthalmology 2013
2. Grunwald et al., Ophthalmology 2014
Key Takeaways

- GA secondary to AMD is a leading cause of blindness
- GA and wet AMD can coexist
- There is no treatment for the 5 million people worldwide who have GA
Natural History and Unmet Need in GA

Nancy M. Holekamp, M.D.
Director, Retina Services
Pepose Vision Institute
St. Louis, MO
Video from NIH National Eye Institute

Demonstrates vision with advanced GA
VISUAL SYMPTOMS

• Loss of ability to see objects clearly (especially in dim light conditions)

• Straight lines appear to be wavy or distorted

• Loss of color vision

• Dark areas of gray and white spots may appear in the center of vision

NORMAL VISION

VISION WITH ADVANCED GA
I just miss being able to read my books … I mean going into the library and just selecting a book … I’ve read all my life you know, and I just miss it so much

Like when I’m getting tablets out, I can look and think, I’ve only got one and then I’ll look again and I’ve got two … It’s difficult to differentiate things

I can’t see cars coming from a distance. I can see when they’re near, but that’s too late then if you’ve crossed over

Same when I’m fishing I get so mad with myself at times I should be able to do that and this and I should be able to see that and I can’t

Apellis and Verana Health Collaboration: IRIS® Registry Natural History Study of ~69,000 GA patients

- **Objective:** To evaluate clinical characteristics and disease progression in patients diagnosed with GA secondary to AMD in real-world clinical practice using the American Academy of Ophthalmology IRIS® Registry (Intelligent Research in Sight) database

- The IRIS Registry is the world’s largest specialty clinical data registry, with >59.99 million unique patients and includes 18,209 clinicians in ophthalmology practice, as of September 1, 2020

<table>
<thead>
<tr>
<th>Cohort 1 – GA:GA</th>
<th>Cohort 2 – GA:wet AMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=44,120)</td>
<td>(n=25,321)</td>
</tr>
</tbody>
</table>

Study Eye: GA Lesion Location

<table>
<thead>
<tr>
<th>1A</th>
<th>1B</th>
<th>2A</th>
<th>2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrafoveal GA</td>
<td>Foveal GA</td>
<td>Extrafoveal GA</td>
<td>Foveal GA</td>
</tr>
<tr>
<td>(n=22,791)</td>
<td>(n=21,329)</td>
<td>(n=12,309)</td>
<td>(n=13,012)</td>
</tr>
</tbody>
</table>

GA and wet AMD based on report of treating physician per ICD10 codes
Up to 1/3 of Study Eyes Progress to Loss of Driving Eligibility in 24 Months

PERCENTAGE WITH STUDY EYE NO LONGER ELIGIBLE FOR DRIVING

COHORT 1

GA:GA

1A
Extrafoveal GA

12 Months

28.0%

24 Months

30.6%

1B
Foveal GA

≥20/40 (eligible for driving)

<20/40 (ineligible for driving)

COHORT 2

GA:wet AMD

2A
Extrafoveal GA

12 Months

19.7%

24 Months

28.0%

2B
Foveal GA

≥20/40 (eligible for driving)

<20/40 (ineligible for driving)

Rahimy E et al. Late-breaking presentation at AAO 2020.
Patients with GA Reported Problems with Transportation in a Retrospective Burden of Illness Study (n=137)

Among patients with GA who had a driver’s license (n = 76),

- 52% said they did not feel confident driving during the day
- 88% said they did not feel confident driving at night
- 48% reported using public transport
- 26% said they drive their own vehicle

AND

Although 55% had a driver’s license, only 48% reported using public transport.
Up to 1/3 of Study Eyes Progress to Legal Blindness in 24 Months

PERCENTAGE WITH STUDY EYE PROGRESSING TO LEGAL BLINDNESS

COHORT 1
GA:GA

1A Extrafoveal GA
1B Foveal GA

COHORT 2
GA:wet AMD

2A Extrafoveal GA
2B Foveal GA

<table>
<thead>
<tr>
<th></th>
<th>12 Months</th>
<th>24 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A: Extrafoveal GA</td>
<td>16.7%</td>
<td>27.1%</td>
</tr>
<tr>
<td>1B: Foveal GA</td>
<td>22.2%</td>
<td>32.2%</td>
</tr>
<tr>
<td>2A: Extrafoveal GA</td>
<td>15.9%</td>
<td>23.5%</td>
</tr>
<tr>
<td>2B: Foveal GA</td>
<td>22.3%</td>
<td>31.0%</td>
</tr>
</tbody>
</table>

- Not legally blind (20/40 and >20/200)
- Legally blind (≤20/200)
Wet AMD Is Not a Rare Occurrence in Patients with GA

- Progression from GA to new onset wet AMD was observed in 4.7% of patients with bilateral GA (GA in both eyes) and 13.3% of patients with wet AMD in the contralateral eye during the first 12 months.

- The rate at 24 months was 8.2% and 21.6% in bilateral GA and wet AMD in the contralateral eye, respectively.

Patients were nearly three times more likely to develop new-onset wet AMD in an eye with GA when wet AMD had already been detected in the contralateral eye.
Key Takeaways

- GA lesion growth is progressive and irreversible
- Wet AMD can occur in GA patients and its occurrence is considerably higher if wet AMD is present in the fellow eye
- Many patients lose the ability to drive within two years, and vision-related quality of life is significantly impacted

There is significant unmet medical need in patients with GA
Role of Complement C3 in AMD

Lukas Scheibler, Ph.D.
Chief Innovation Officer
Apellis Pharmaceuticals
Excessive Complement Activation and Geographic Atrophy: Key Lines of Evidence

Histological:
Complement proteins in drusen, choroid, and sub-RPE space\(^1\)

Physiological:
Elevated levels of complement activation products can be observed in the plasma and ocular tissues of patients with AMD\(^2\)

Genetic:
Variants in complement system genes have been implicated in AMD pathogenesis\(^3,4\)

Pegcetacoplan is an investigational, targeted C3 therapy designed to regulate the overactivation of complement and improve the standard of care for patients with complement-mediated conditions, including GA1

Pegcetacoplan is composed of two 15-amino acid fragment cyclic peptides linked by a PEG molecule2
Targeting C3 for Comprehensive Control of Complement

WHY C3?
- Controls all three pathways
- Controls all downstream effects

PEGCETACOPLAN

C3

Classical Pathway ---*--- Lectin Pathway ---*--- Alternative Pathway

C3 → C3a: Inflammation → STOP

C3 → C3b: Cell removal → STOP

C5 → C5a: Inflammation → STOP

C5 → C5b: MAC → Cell death → STOP

FOR APELLIS USE ONLY
Pegcetacoplan: Phase 2
FILLY Results

Jeffrey S. Heier, M.D.
Director, Retina Service and Director, Retinal Research
Ophthalmic Consultants of Boston
Phase 2 FILLY Study: Design

Eligible Patients with GA*
246 subjects in 43 sites†

Single masked
Randomized 2:2:1:1

Sham groups were pooled for all analyses

Pegcetacoplan
15 mg/0.1 mL monthly
n=86

Pegcetacoplan
15 mg/0.1 mL every other month
n=79

Sham
monthly
n=41

Sham
every other month
n=40

Population: patients with geographic atrophy* secondary to AMD

Design: single masked, randomized 2:1:2:1

Duration: 18 months

*Confirmed by the central reading center using fundus autofluorescence images.
†Not counting the 3 satellite sites
Phase 2 FILLY Study: Timeline and Endpoints

Images taken at:
- 0 months
- 2 months
- 6 months
- 12 months
- 18 months

Primary efficacy endpoint:
Change in geographic atrophy (GA) lesion size from baseline at month 12

Primary safety endpoint:
Number and severity of local and systemic treatment emergent adverse events (TEAEs)
Phase 2 FILLY Study: Pegcetacoplan Met Primary Endpoint, Reducing GA Lesion Growth

- **Sham injections (N=80)**
- **Pegcetacoplan every other month (n=78)**
- **Pegcetacoplan monthly (N=84)**

Chroma and Spectri Phase 3 Trials

<table>
<thead>
<tr>
<th>Change from baseline in square root of GA area at 48 wk, mm</th>
<th>Sham Pooled (n=598)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted mean (SE)</td>
<td>0.342 (0.007)</td>
</tr>
</tbody>
</table>

* ^\text{p}=0.067 \text{vs sham}
† ^\text{p}=0.008 \text{vs sham}

Phase 2 FILLY: Impact of Pegcetacoplan on Absolute GA Lesion Growth Is Consistent with the Primary Endpoint

Primary Endpoint (Square Root Transformed Lesion Growth)

<table>
<thead>
<tr>
<th>Month</th>
<th>Sham injections (N=80)</th>
<th>Pegcetacoplan every other month (n=78)</th>
<th>Pegcetacoplan monthly (N=84)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.25†</td>
<td>0.28*</td>
<td>0.28*</td>
</tr>
<tr>
<td>6</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>12</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
</tbody>
</table>

*Post hoc analysis

Absolute (Untransformed) Lesion Size

<table>
<thead>
<tr>
<th>Month</th>
<th>Sham injections (N=80)</th>
<th>Pegcetacoplan every other month (n=78)</th>
<th>Pegcetacoplan monthly (N=84)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.2†</td>
<td>0.2†</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>1.0</td>
<td>1.0†</td>
<td>1.0†</td>
</tr>
</tbody>
</table>

* p=0.068 vs sham
† p=0.005 vs sham

mITT, Observed, Mixed-Effect Model

A mixed effect model with main effects of treatment, visit and GA lesion at baseline, and interactions of treatment \times visit, visit \times baseline.

M12DBL Data
FILLY Post Hoc Analysis of Lesion Growth by 6-Month Periods – Increasing Effect Size with Longer Duration of Treatment

Data on file

- Sham Injections
 - Change from baseline in square root GA lesion growth (mm)
 - 0-6 months, 6-12 months, 12-18 months
 - 33% lesion growth difference vs sham $P=0.01$

- Pegcetacoplan (APL-2) every other month
 - 0-6 months, 6-12 months, 12-18 months
 - 47% lesion growth difference vs sham $P<0.001$

- Pegcetacoplan (APL-2) monthly
 - 0-6 months, 6-12 months, 12-18 months

Data from subjects with a measurable GA lesion size at Months 6, 12, and 18.

FOR APELLIS USE ONLY
OBJECTIVE

- Post hoc analysis of FILLY to examine efficacy of pegcetacoplan across subgroups; to determine risk factors that predicted GA progression, and whether the efficacy of pegcetacoplan remained significant after adjusting for these risk factors

RESULTS

- Efficacy of pegcetacoplan was consistent across subgroups
- Risk factors identified as predictors of GA progression in the FILLY study were in line with those described in the literature
- Treatment effect of pegcetacoplan remained significant when population was controlled for these key risk factors

FILLY Post Hoc Multivariate Analysis

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Greatest progression</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foveal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APL2-Monthly</td>
<td>40</td>
<td></td>
<td>0.23 (0.16)</td>
</tr>
<tr>
<td>APL2-EOM</td>
<td>38</td>
<td></td>
<td>0.22 (0.22)</td>
</tr>
<tr>
<td>Sham</td>
<td>37</td>
<td></td>
<td>0.3 (0.16)</td>
</tr>
<tr>
<td>Extrafoveal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APL2-Monthly</td>
<td>27</td>
<td></td>
<td>0.3 (0.17)</td>
</tr>
<tr>
<td>APL2-EOM</td>
<td>20</td>
<td></td>
<td>0.37 (0.29)</td>
</tr>
<tr>
<td>Sham</td>
<td>30</td>
<td></td>
<td>0.44 (0.24)</td>
</tr>
</tbody>
</table>

![Graph](image-url)
Phase 2 FILLY Post Hoc Analysis: Decreased Lesion Growth in Treated Eye vs. Untreated Fellow Eye

Sham injections (N=72)

Pegcetacoplan every other month (n=63)

Pegcetacoplan monthly (N=69)

Includes patients from the bilateral GA population

Change from baseline in square root GA lesion growth (mm)

0 0.1 0.2 0.3 0.4

0 2 6 12 months

0.3 0.2 0.1 0

0.3 0.2 0.1 0

0.3 0.2 0.1 0

0 2 6 12 months

0 2 6 12 months

0 2 6 12 months

Fellow eye

Study eye

Fellow eye

Study eye

Fellow eye

Study eye

Fellow eye

Study eye

Apellis
Data on file.
Phase 2 FILLY Study: Safety

• Exudations at 12 Months (treatment period):
 – 16% monthly, 6% every-other-month, 1% sham*
 – 0 cases of classical CNV
 – No clinically significant impact on vision
 – Most treated with anti-VEGF therapy

• Safety in line with other studies of intravitreally administered agents

• Serious adverse events in the study eye were reported in 4 of 86 (4.7%), 2 of 79 (2.5%), and 1 of 81 (1.2%) of patients in the pegcetacoplan monthly, pegcetacoplan every-other-month, and sham groups, respectively.

* Data on file
Earlier Endpoints for Retinal Atrophy

• Therapeutic trials for geographic atrophy are focused on the end-stage (complete RPE and outer retinal atrophy or cRORA); e.g., GA lesions

• Earlier endpoints in the atrophy pathway have been defined: incomplete RPE and outer retinal atrophy (iRORA); e.g., consistent with intermediate AMD

iRORA: incomplete RPE and outer retinal atrophy; cRORA: complete RPE and outer retinal atrophy; RPE: retinal pigment epithelium
Sadda et al., EURETINA 2020 late-breaking presentation.
Phase 2 FILLY Post Hoc Analysis: Pegcetacoplan Slowed Progression from Intermediate AMD to GA

Progression from IRORA to CRORA

<table>
<thead>
<tr>
<th></th>
<th>Month 6</th>
<th>Month 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pegcetacoplan Monthly (n=19)</td>
<td>26.3%</td>
<td>50.0%</td>
</tr>
<tr>
<td>Sham (n=36)</td>
<td>50.0%</td>
<td>81.8% *</td>
</tr>
</tbody>
</table>

Pearson Chi-Square:
- Month 6 - P=0.08; *Month 12 - P=0.02

Relative risk:
- Month 12 - 0.61 (0.37-1.00)

Sadda et al., EURETINA 2020 late-breaking presentation.
Key Takeaways: Pegcetacoplan in GA

- Phase 2 FILLY study met primary endpoint, reducing GA lesion growth, with benefit across GA phenotypes
- Demonstrated a dose response with sham group progressing at expected rate
- Effect in treated eye vs. contralateral eye
- Slowed progression from intermediate AMD to GA; potential for earlier intervention in course of GA
- Safety in line with other studies of intravitreally administered agents
Pegcetacoplan: Phase 3 DERBY and OAKS Studies

Jeffrey Eisele, Ph.D.
Local Chronic Program Lead
Apellis Pharmaceuticals
DERBY and OAKS: Two Phase 3 Studies Enrolled (n=1,256) with Top-line Results Expected in Q3 2021

<table>
<thead>
<tr>
<th>SHAM GROUP</th>
<th>Sham injections</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=200 (pooled)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PEGCETACOPLAN</th>
<th>PEGCETACOPLAN every other month 15 mg/0.1 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=200</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PEGCETACOPLAN</th>
<th>PEGCETACOPLAN monthly 15 mg/0.1 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=200</td>
<td></td>
</tr>
</tbody>
</table>

Same study population and trial design as FILLY

Population: patients with geographic atrophy secondary to AMD

Primary endpoint: change in total area of GA lesion(s) based on Fundus Autofluorescence (FAF) at month 12

Design: double masked, randomized 2:1:2:1

Treatment: 15 mg/0.1 mL intravitreal injection vs. sham injection

Sample size: >600 subjects from approx. 100 multinational sites per study

Duration: 2 years
DERBY and OAKS: Key Efficacy Endpoints

PRIMARY
- Change from baseline to Month 12 in total area of GA lesion(s) in the study eye (in mm2) based on FAF

SECONDARY
- BCVA, LL-BCVA, low-luminance deficit
- Reading speed
- Microperimetry (OAKS study only*) — Macular Integrity Assessment (MAIA) device
- National Eye Institute Visual Functioning Questionnaire 25-Item Version (NEI VFQ-25)
- Functional Reading Independence Index (FRI) composite score

*Subjects must meet following criteria: (a) able to detect fixation target, (b) total elapsed time to complete 68-point exam <30 min, (c) reliability test ratio <20%, (d) willing and able to undertake microperimetry in investigator’s opinion.

BCVA=best-corrected visual acuity; FAF=fundus autofluorescence; LL-BCVA=low-luminance BCVA.

NCT03525600, NCT03525613
Key Changes from FILLY to DERBY and OAKS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FILLY</th>
<th>DERBY AND OAKS</th>
<th>RATIONALE/IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary endpoint</td>
<td>Change in lesion size (square root transformed)</td>
<td>Absolute change in lesion size</td>
<td>Followed recommendation from FDA. FILLY absolute change was consistent with square root</td>
</tr>
<tr>
<td>Study masking</td>
<td>Single masked</td>
<td>Double masked</td>
<td>Further minimize potential for bias</td>
</tr>
<tr>
<td>Assessment</td>
<td>Months 0, 2, 6, 12</td>
<td>Months 0, 2, 4, 6, 8, 10, 12</td>
<td>Additional data points to better evaluate primary endpoint</td>
</tr>
<tr>
<td>Handling of exudations</td>
<td>Anti-VEGF initiated; pegcetacoplan discontinued</td>
<td>Anti-VEGF initiated; pegcetacoplan treatment continues</td>
<td>Decrease the amount of study treatment discontinuation</td>
</tr>
</tbody>
</table>
Why Do We Believe DERBY and OAKS Will Be Successful?

FILLY results are robust: Same study population and core design as the FILLY trial
- All sensitivity analyses in FILLY confirmed the efficacy profile
- Conservative approaches to managing missing data maintained treatment effect

Implemented learnings from FILLY to improve DERBY and OAKS study designs
- Patients who develop exudative AMD will stay in the study receiving pegcetacoplan and anti-VEGF

Study masking and confirmation of exudation by reading center may reduce potential for bias in diagnosis of exudation

Strategy to mitigate impact of missed injections due to COVID-19; studies still well powered for primary endpoint
DERBY and OAKS: Key Takeaways

- **Broad GA patient population reflective of real-world GA patients**
 - Fellow eye neovascular AMD allowed
 - Extrafoveal and foveal GA lesions allowed

- **Same study population and design as the FILLY trial**

- **Top-line results expected Q3 2021**
Early Detection of Geographic Atrophy with Artificial Intelligence

Pearse Keane
Moorfields Eye Hospital and UCL Institute of Ophthalmology

@pearsekeane
My Background

Consultant
Ophthalmologist

Associate
Professor
World Changing Ideas 2015

10 big advances that will improve life, transform computing and maybe even save the planet

By THE EDITORS on December 1, 2015

Why I’m passionate about helping to cure AMD

Prevalence and incidence of age-related macular degeneration in Europe: a systematic review and meta-analysis

Jeany Q Li, Thomas Welchowski, Matthias Schmid, Marten Mauschitz, Frank G Holz, Robert P Finger

~25% of people aged >60 years estimated to have early or intermediate AMD!!!
“There is no treatment for “dry” AMD”
An Opportunity?
984 OCT volumes - 399 eyes - 200 patients
Labelling Strategy

Dataset - external validation

192 OCT volumes - 192 eyes - 110 patients
Image Reconstruction

Area (mm²)
Key Results

Internal validation dataset

<table>
<thead>
<tr>
<th>Approach</th>
<th>n</th>
<th>DSC Median</th>
<th>DSC Mean</th>
<th>DSC SD</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach 1</td>
<td>988</td>
<td>0.84</td>
<td>0.75</td>
<td>0.24</td>
<td>0.62</td>
</tr>
<tr>
<td>Approach 2</td>
<td>988</td>
<td>0.83</td>
<td>0.75</td>
<td>0.25</td>
<td>0.66</td>
</tr>
</tbody>
</table>

External validation dataset

All

<table>
<thead>
<tr>
<th>Approach</th>
<th>n</th>
<th>DSC Median</th>
<th>DSC Mean</th>
<th>DSC SD</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach 1</td>
<td>713</td>
<td>0.96</td>
<td>0.91</td>
<td>0.15</td>
<td>0.93</td>
</tr>
<tr>
<td>Approach 2</td>
<td>713</td>
<td>0.95</td>
<td>0.87</td>
<td>0.20</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Human grader 1 vs. Human grader 2

<table>
<thead>
<tr>
<th>Approach</th>
<th>n</th>
<th>DSC Median</th>
<th>DSC Mean</th>
<th>DSC SD</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach 1</td>
<td>806</td>
<td>0.80</td>
<td>0.69</td>
<td>0.30</td>
<td>0.79</td>
</tr>
<tr>
<td>Approach 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

GA only

<table>
<thead>
<tr>
<th>Approach</th>
<th>n</th>
<th>DSC Median</th>
<th>DSC Mean</th>
<th>DSC SD</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach 1</td>
<td>600</td>
<td>0.96</td>
<td>0.92</td>
<td>0.14</td>
<td>0.94</td>
</tr>
<tr>
<td>Approach 2</td>
<td>600</td>
<td>0.96</td>
<td>0.89</td>
<td>0.18</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Other retinal pathologies

<table>
<thead>
<tr>
<th>Approach</th>
<th>n</th>
<th>DSC Median</th>
<th>DSC Mean</th>
<th>DSC SD</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach 1</td>
<td>149</td>
<td>0.80</td>
<td>0.69</td>
<td>0.30</td>
<td>0.72</td>
</tr>
<tr>
<td>Approach 2</td>
<td>149</td>
<td>0.85</td>
<td>0.77</td>
<td>0.25</td>
<td>0.83</td>
</tr>
</tbody>
</table>
TITLE PAGE
Title Development and validation of a clinically applicable deep-learning model for detection and quantification of Geographic Atrophy from three-dimensional Optical Coherence Tomography scans

Author listing
Gongyu Zhang1*, Dun Jack Fu1*, Bart Liefers1,2, Livia Faes1,2, Sophie Glinton1, Siegfried Wagner1, Robbert Struyven1, Nikolas Pontikos1, Pearse A. Keane1, Konstantinos Balaskas1
*Authors contributed equally

Institutions
1 NIHR Biomedical Research Centre At Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
2 Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands
3 Eye Clinic of the Cantonal Hospital of Lucerne, Lucerne, Switzerland

Corresponding author
Konstantinos Balaskas
Ophthalmic Reading Centre, Moorfields Eye Hospital
62 City Rd, London EC1V 2PD
+44 (0) 2072533411
L.balaskas@nhs.net
Next Steps?

Structure-Function

Fast Progressors?!
From Code to Clinic?

p.keane@ucl.ac.uk
THANK YOU

to our presenters!
We believe that GA is the consequence of a failure to clean up C3 deposition in the retina.

Single pathway inhibitors are insufficient to correct this failure.

Pegcetacoplan, a targeted C3 therapy, has the potential to accomplish this with its broad, multi-point control of complement across all three pathways.

Key Misconceptions We Addressed Today

“Other complement inhibitors have failed. Why should pegcetacoplan work?”

“Pegcetacoplan has no impact on visual acuity. It will take years to notice a difference. Why would people take this drug?”

- Visual acuity charts don't reflect the real impact of GA in vision due to foveal sparing.
- GA is a relentless, progressive disease that severely impairs patients’ visual function and quality of life.
- A leading cause of blindness, GA has no approved treatments and remains the most significant unmet need in the retina.
- The need and desire for treatment was reflected in the speed of enrollment in DERBY and OAKS.
Key Misconceptions We Addressed Today

“How can we trust the FILLY data?”

- The FILLY study met its primary endpoint, demonstrated a dose response, and the sham group progressed at the expected rate.
- Dropouts were in line with other GA trials. 242 out of 246 patients (modified intent-to-treat: mITT) were included in the primary analysis population, which accounted for missing data with the well-established mixed-effect model for repeated measures (MMRM).
- All sensitivity analyses confirmed the efficacy profile.
- Post hoc analyses also showed that lesion growth slowed in treated eyes vs. contralateral eyes in patients with bilateral GA and that pegcetacoplan slowed progression from intermediate AMD to GA.

“FILLY had safety issues. Pegcetacoplan causes ‘wet AMD’ and had two cases of infectious endophthalmitis.”

- The FILLY trial had no safety findings that limited DERBY and OAKS, which studies the same broad patient population.
- Exudations are an expected occurrence in GA. No classical CNV was detected and there was no clinically significant impact on vision.
- FILLY was single-masked, which may have led to greater reporting of exudations in subjects randomized to pegcetacoplan than in subjects randomized to sham. DERBY and OAKS are double masked to further minimize potential bias.
- Two cases of infectious endophthalmitis out of ~1,500 intravitreal injections are consistent with reported incidence rates in published studies involving intravitreal injection.
Apellis: Global Leader in Complement

OUR STRATEGY

- Establish systemic pegcetacoplan as a **disruptive therapy** across rare, complement-driven diseases
- Be #1 in the **retina**
- Develop **new technologies** to control complement

2021 KEY MILESTONES

- PNH launch in H1 2021 and progress 4 additional registrational programs
- Phase 3 GA results in Q3 2021 a blockbuster opportunity
- Advance 3 compounds into clinical development in the next 24 months

Focused on compassion and commitment to patients
Pegcetacoplan: Advancing the First Potential Treatment for Geographic Atrophy (GA)

Virtual Investor Event
January 28, 2021